
Pat O’Sullivan

Mh4718 Week 6

Week 6

If we use a program to calculate a Riemann sum then there is a trade off be-
tween the mathematical theory and the problem of round off error. In particular
cancellation error puts a limit on how accurate a Riemann Sum can be.

If f is a function integrable over the interval [a, b] a Riemann Sum is determined
by first deciding on a partition of the interval. Very often we choose an equal
subdivision of the interval into n sub-intervals of equal size. If we decide on n

equal sized sub-intervals then each sub-interval will have length h =
b− a

n
.

We thus get a Riemann sum:

f(a)h + f(a + h)h + f(a + 2h)h + . . . f(a + (n− 1)h)h

which is an estimate for
∫ b

a
f(x)dx We can prove that the finer the partition

(the smaller h is here) then the closer the Riemann Sum will be to the exact
value of the interval. However, if we make h too small in a computer program
then there is a danger that we cause greater rounding error in the adding up
process. The following program illustrates this:

#include <iostream>
#include<cmath>
#include<fstream>
using namespace std;
float f(float x)
{

return x;
}
void main()
{
ofstream fout("numerics.txt");

1

2 Mh4718 Numerical Analysis

float sum;
float a=0,b=0.125;

float h;

for(int n = 10;n<pow(2.0,27);n*=2)
{

sum=0;
h=(b-a)/n;
for(int i =0;i<n;i++)
{

sum+=f(a+i*h)*h;
}

fout.precision(20);
fout<<n<<" \t "<<fabs(sum-0.0078125)<<endl;

}
}

You will see here that the Riemann Sum becomes closer to the exact value
of the integral as n increases up to a certain value but then as n increases
further the Riemann Sum moves away from the integral value except for some
exceptional values. If you changed all the float types to double types then you
will notice that the Riemann Sums become consistently more accurate as n

increases because the extra space available for the mantissa will reduces the
influenc of roundoff error.

0.1 Estimating Functions

The only mathematical operations that a computer can carry out are addition,
multiplication, subtraction and division. It follows that the only type of func-
tions that a computer can directly evaluate are polynomials. All other types of
function values have to be estimated by using suitable polynomials.
The “natural” process for evaluating polynomials actually uses unnecessarily
many multiplication operations.

Example 0.1

How many operations are needed to evaluate this for a particular value of x

using the “natural” way to evaluate the polynomial?
Consider the polynomial

p(x) = 2x4 + 7x3 + 6x2 + 8x + 12.

Week 6 3

To make the operations count easier, write it as

p(x) = 2*x*x*x*x + 7*x*x*x + 6*x*x + 8*x + 12

and now counting operation signs gives 10 multiplications and 4 additions.

Horner’s method gives us a means of evaluating polynomials using fewer mul-
tiplications and so possibly fewere round-off errors:

0.1.1 Horner’s method

Thm: (Horner’s method)
Let P (x) = anxn + an−1x

n−1 + + a1x + a0

Let bn = an and bk = ak + bk+1x0 k = n− 1, . . . 0
If

Q(x) = bnxn−1 + bn−1x
n−2 + · · ·+ b2x + b1

then
P (x) = Q(x)(x− x0) + b0

Pf:
P (x) = anxn + an−1x

n−1 + . . . a1x + a0

= bnxn+(bn−1−bnx0)xn−1+(bn−2−bn−1x0)xn−2+· · ·+(b1−b2x0)x+b0−b1x0

= bnxn+bn−1x
n−1−bnx0x

n−1+bn−2x
n−2−bn−1x0x

n−2+· · ·+b1x−b2x0x+b0−b1x0

= bnxn+bn−1x
n−1+bn−2x

n−2+· · ·+b1x+b0−bnx0x
n−1−bn−1x0x

n−2−· · ·−−b2x0x−b1x0

= Q(x)(x− x0) + b0

QED
Corrolary: P (x0) = b0.

Proof: P (x) = Q(x)(x−x0)+b0 ⇒ P (x0) = Q(x0)(x0−x0)+b0 ⇒ P (x0) = b0.

QED

4 Mh4718 Numerical Analysis

Example 0.2

Now determine the number of multiplications and additions in using Horner’s
method to evaluate, say p(2) for the above polynomial:

2 2 7 6 8 12
+ +2× 2 +2× 11 +2× 28 +2× 64

2 11 28 64 140
So we see that the value p(2) = 140 and we did 4 multiplications and 4 addi-
tions.

We can also see from Horner’s method that

p(x) = (2x3 + 11x2 + 28x + 64)(x− 2) + 140.

Code for Horner’s method (assuming a degree 10 polynomial):

double a[11]={............};
double b[11];
b[10]=a[10];

for(int i=9;i>=0;i--)
{
b[i]=a[i]+0.8*b[i+1];
}
cout<<b[0]<<endl;
}

The importance of Horner’s method for programming is that it uses fewer
operations to calculate the value of a polynomial and so is liable to have less
round off error.

